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Abstract
We review the theoretical behaviour of the total and one-particle structure factors at a quantum
phase transition for temperature T = 0. The predictions are compared with exact or numerical
results for the transverse Ising model, the alternating Heisenberg chain, and the bilayer
Heisenberg model. At the critical wavevector, the results are generally in accord with
theoretical expectations. Away from the critical wavevector, however, different models display
quite different behaviours for the one-particle residues and structure factors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern probes of material properties, such as the new inelastic
neutron scattering facilities, are reaching such unprecedented
sensitivity that they can measure the spectrum not only
of a single quasiparticle excitation, but even two-particle
excitations (e.g. [1]). These quasiparticles can collide, scatter,
or form bound states just like elementary particles in free
space. The spectrum of the multiparticle excitations is a crucial
indicator of the underlying dynamics of the system.

The experiments measure scattering cross-sections, which
are proportional to the appropriate ‘structure factor’ for the
system or material at hand [2, 3]. It is therefore of particular
interest to explore the critical behaviour of these structure
factors in the vicinity of a quantum phase transition. In
this paper, we present a review of this topic, comparing the
theoretical predictions with some exact analytic results and
numerical calculations for various models. We concentrate
here on quantum spin models, but the major conclusions are
applicable more generally.

The theoretical behaviour of the total structure factor has
been discussed since early days. More recently, people have
begun to discuss the breakdown of the total structure factor
into its component multiparticle contributions from one, two,
. . . etc intermediate quasiparticles. Sachdev [4], for instance,
discusses the behaviour of the 1-particle structure factor in his
book on quantum phase transitions. In section 2 of the paper,
we draw together these theoretical discussions.

In the remainder of the paper, we review the behaviour of
the structure factors for some specific models. In section 3 we

look at the transverse Ising chain, which is exactly solvable,
and hence yields some exact results for the 1-particle structure
factors [5]. In section 4, we review some numerical results
obtained by series expansion methods for some other models,
namely the transverse Ising model in higher dimensions [5], the
alternating Heisenberg chain [6, 7], and the bilayer Heisenberg
antiferromagnet [8].

Our main conclusions, in section 5, concern the
relationship between the 1-particle structure factor and the total
structure factor. It is usually assumed that the 1-particle term
dominates the total structure factor, and their scaling behaviour
is the same; but this is not always strictly true. In the transverse
Ising model and the dimerized alternating chain, for example,
the 1-particle structure factor actually vanishes at the critical
coupling, everywhere except at the critical wavevector. Only
for the bilayer model does the 1-particle structure factor remain
dominant at all wavevectors. Thus the behaviour at the critical
coupling, but away from the critical wavevector, appears highly
model-dependent.

2. Review of theory

Assuming magnetic scattering from atomic spins Si localized
on sites i of a Bravais crystal lattice, the neutron scattering
cross section can be directly related to the dynamical structure
factor [2]

Sαγ (k, ω) = 1

2πN

∑

i, j

∫ ∞

−∞
dt ei(ωt−k·(rj−ri))Cαγ (rj − ri, t)

(1)
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where
Cαγ (rj − ri, t) = 〈Sαj (t)S

γ

i (0)〉. (2)

Here i, j label sites of the lattice, α, γ label Cartesian
components of the spin operator S, N is the number of lattice
sites, Cαγ (r, t) is the spin–spin correlation function, and the
angular bracket denotes the thermal expectation value at finite
T or, at T = 0, the ground-state expectation value. The
structure factor satisfies the condition of ‘detailed balance’

Sαγ (k, ω) = eβωSγα(−k,−ω), (3)

where β = 1/kBT in the exponent is the usual Boltzmann
coefficient. The time dependence of the spin operator is given
as usual by

Sαj (t) = eiH t Sαj (0)e
−iH t . (4)

Integrating over energy gives the ‘integrated’ or ‘static’
structure factor

Sαγ (k) =
∫ ∞

−∞
dω Sαγ (k, ω) = 1

N

∑

i, j

eik·(ri−rj)〈Sαj Sγi 〉, (5)

the spatial Fourier transform of the 2-spin correlator at equal
times.

Integrating over momentum then yields a sum rule:

1

N

∑

k

∫ ∞

−∞
dω Sαγ (k, ω) = 1

N

∑

i

〈Sαi Sγi 〉, (6)

involving the expectation value of two spin operators at the
same point.

If Sα and Sγ are Hermitian conjugates, which is usually
the case of most interest, we can introduce a complete set of
energy eigenstates |n〉 in equation (1) and integrate over time
to get

Sαγ (k, ω) =
∑

n

Sαγn (k, ω), (7)

i.e. a sum over ‘exclusive’ structure factors or ‘spectral
weights’ Sαγn , where

Sαγn (k, ω) = 1

N
δ(ω − En + E0)

×
∣∣∣∣∣
∑

i

〈ψn |Sγi |ψ0〉eik·ri

∣∣∣∣∣

2

(T = 0) (8)

or for T �= 0

Sαγn (k, ω) = 1

N Z

∑

m

δ(ω − En + Em)e
−βEm

×
∣∣∣∣∣
∑

i

〈ψn |Sγi |ψm〉eik·ri

∣∣∣∣∣

2

(9)

where En is the energy of the nth eigenstate, |ψ0〉 is the ground
state, and Z is the partition function

Z =
∑

n

e−βEn . (10)

If the system exhibits well-defined quasiparticle excitations,
the intermediate states n can be classified into 1-particle,
2-particle or many-particle states (in perturbation theory, at

least), each state making a non-negative contribution, so that
the total structure factor is real and positive semi-definite.

Following Sachdev [4], we may also define the
corresponding generalized susceptibility χαγ (k, ω) by a
Fourier transform in imaginary time (it → τ )

χαγ (k, ωn) =
∫ β

0
dτ

∑

i

Cαγ (ri, τ )e
−i(k·ri−ωnτ) (11)

where ωn = 2πnT , n integer, is the Matsubara frequency
arising from periodic boundary conditions across the strip
of width β in imaginary time. Then χαγ (k, ω) for real
frequencies is obtained by an analytic continuation iωn →
ω + iδ, where δ is a positive infinitesimal. The dynamic
susceptibility measures the response of the magnetization Sα

to an external field coupled linearly to Sγ , oscillating with
wavevector k and frequency ω. One can show [2] that χαγ

satisfies the Kramers–Kronig relation

Re{χαγ (k, ω)} = P
∫ ∞

−∞
d�

π

Im{χαγ (k,�)}
�− ω

(12)

where P indicates the principal part.
If Sα and Sγ are Hermitian conjugates, then a fluctuation-

dissipation theorem connects the structure factor Sαγ to the
imaginary part of the dynamic susceptibility [2, 4]:

Sαγ (k, ω) = 1

π(1 − e−βω)
Im{χαγ (k, ω)}. (13)

If Sα and Sγ are themselves Hermitian, one can show,
using spectral analysis as for Sαγ above, that

χαγ∗(k, ω) = χαγ (−k,−ω). (14)

If both conditions are true, i.e. α = γ and Sα is Hermitian,
then the diagonal susceptibility obeys

χαα(k, ω) = χαα(−k, ω) (15)

and
χαα(k,−ω) = χαα∗(k, ω). (16)

Thus Im{χαα} is an odd function of ω, while Re{χαα} is an
even function of ω. From (13), the dynamic structure factor
then satisfies

Sαα(k,−ω) = e−βωSαα(k, ω) (17)

2.1. Critical behaviour near a quantum phase transition

Now let us suppose that a quantum spin model undergoes a
quantum phase transition as a function of some coupling λ at
temperature T = 0. The critical behaviour of the integrated
structure factor can be obtained from a heuristic argument
as follows. In the continuum approximation near the critical
point, equation (6) for the static structure factor reduces to

Sαγ (k) =
∫

ddreik·r〈Sα(r)Sγ (0)〉0 (18)

where d is the number of spatial dimensions.
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The oscillating factor exp(ik · r) will kill off the
contributions from large distances unless it is compensated
by a corresponding oscillation exp(−ik0 · r) in the correlation
function. Then we can write

Sαγ (k) =
∫

ddr eiq·rg(r) (19)

where q = k − k0, and g(r) is a smooth function. Scaling
theory [4, 9] then tells us that in the vicinity of the critical point

g(r) ∼ r−(d+z−2+η) f (r/ξ) (20)

where ξ is the correlation length, and z is the dynamic critical
exponent. Thus when k = k0, the ‘critical wavevector’, we
have

Sαγ (k0) =
∫

ddr r−(d+z−2+η) f (r/ξ)

∼ ξ 2−z−η
∫

dd y y−(d+z−2+η) f (y) (21)

where y = r/ξ . As the coupling λ → λc, corresponding to a
quantum phase transition, we expect

ξ ∼ |λc − λ|−ν (22)

and hence
Sαγ (k0) ∼ |λc − λ|−(2−z−η)ν . (23)

For q = |q| small but non-zero, q 	 1/ξ , we have

Sαγ (k) ∼ ξ 2−z−η
∫

dd y y−(d+z−2+η)eiξq·y f (y)

∼ q−(2−z−η)
∫

dd y ′ y ′−(d+z−2+η)eiq̂·y′
f ′(y ′, qξ) (24)

where y′ = qξy, so that at the critical coupling we expect
Sαγ (k) to scale like q−(2−z−η) at small q .

For the 1-particle exclusive structure factor, we may
paraphrase Sachdev’s argument [4] as follows. Assuming
relativistic invariance of the effective field theory (i.e. z = 1),
which applies to many though not all models, the dynamic
susceptibility in the vicinity of a quasiparticle pole is expected
to have the form

χαγ (k, ω) = Aαγ

c2k2 +�2 − (ω + iε)2
+ · · · (25)

where ε is a positive infinitesimal, c the quasiparticle velocity,
� is the quasiparticle energy gap, and Aαγ is the ‘quasiparticle
residue’. Then the dynamic structure factor is

Sαγ (k, ω) = 1

π
Im{χαγ (k, ω)}. (26)

Let
E(k) =

√
c2k2 +�2 (27)

then from (25)–(27) we can write the dynamic structure factor
for the 1-particle state

Sαγ1p (k, ω) = Aαγ (k)
2E(k)

δ(ω − E(k)) (28)

and hence the static structure factor

Sαγ1p (k) =
∫ ∞

0
dω Sαγ1p (k, ω) = Aαγ (k)

2E(k)
(29)

where Aαγ (k) is the residue function, which in general may
be a function of k. Note that S(k, ω) at T = 0 vanishes for
ω < 0, from equation (13).

From renormalization group theory [9], the scaling
dimensions of these quantities are expected to be [5]
dim[χαγ ] = −2 + η and dim[Aαγ ] = η, or in other words
we expect near the critical point

Aαγ (k0) ∼ |λc − λ|ην, (30)

E(k0) ∼ |λc − λ|ν, (31)

and hence

Sαγ1p (k0) ∼ |λc − λ|−(1−η)ν, (32)

just as for the total structure factor (recall here z = 1). In many
cases, the 1-particle contribution will dominate the structure
factor, but this is not always true, as we shall see.

These behaviours may be encapsulated in a scaling form.
Assuming once again relativistic invariance of the effective
field theory near the critical point (z = 1), so that the
quasiparticle excitation energy is given by equation (27), and
the energy gap

� = E(k0) ∼ |λc − λ|ν, (33)

then following Sachdev [4] the structure factor at low
temperatures to one side of the transition is expected to take
the form

S(k, ω) = ZS

T 2−η �S

(
cq

T
,
ω

T
,
�

T

)
(34)

where �S is a universal scaling function and ZS is a
normalization constant depending on the microscopic model.
In the ‘quantum critical’ regime, �/T → 0.

At zero temperature, we may choose � as the reference
variable rather than T , and write

S(k, ω) = Z̃S

�2−η �̃S

(cq

�
,
ω

�

)
(35)

or integrating over ω,

S(k) = Z̃ ′
S

�1−η �̃
′
S

(cq

�

)
(36)

where

�̃′
S

(cq

�

)
= �

∫ ∞

−∞
dω′ �̃S

(cq

�
,ω′

)
. (37)

If the energy gap is zero, as in the presence of Goldstone
bosons, an energy scale can be constructed from the spin-
stiffness ρs or the Josephson correlation length ξJ—we refer
to Sachdev [4] for details.
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3. Comparison with exact results

3.1. Transverse Ising model in one space dimension

The transverse Ising chain model is exactly solvable, and
expressions for the energy spectrum, magnetization, etc have
been given by Pfeuty [10].

Our aim is to confirm the scaling behaviour of the structure
factors for this model. In the disordered phase, the Hamiltonian
for the model can be written as

H =
∑

i

(1 − σ z
i )− λ

∑

〈i j〉
σ x

i σ
x
j (38)

where the σαi = 2Sαi are Pauli operators and the second sum
is over nearest neighbour pairs. The critical point [10] lies at
λ = 1, and the 1-particle energy is

E(k) = 2�(k), (39)

where
�(k) = [1 + λ2 − 2λ cos(k)]1/2, (40)

so that the ‘critical wavevector’ is k0 = 0 and the energy gap is

� = 2(1 − λ). (41)

The 1-particle exclusive structure factors have been
discussed by Hamer et al [5]. Multiparticle expansions for
correlation functions for the quantum XY model in one space
dimension have been obtained by Vaidya and Tracy [11]. The
transverse Ising model is merely a special case of the model
considered by them (section 2.2 of [11] for t = 0, γ → 1,
and h = 1/λ). Hence one can obtain exact expressions for the
1-particle contributions to the correlation functions

Cαα(n) = 〈Sα0 Sαn 〉0 (42)

as

Cxx
1p (n) = (1 − λ2)1/4

1

8π

∫ 2π

0
dk

cos(kn)

�(k)

C yy
1p (n) = (1 − λ2)1/4

1

8π

∫ 2π

0
dk cos(kn)�(k).

(43)

Hence one finds

Sxx
1p (k) = (1 − λ2)1/4

4�(k)

Syy
1p (k) = 1

4 (1 − λ2)1/4�(k).

(44)

In the vicinity of λ → 1, k → 0, equation (39) reduces to

E(k) → � f (cq/�) (45)

where
f (x) =

√
1 + x2 (46)

with c = 2, which is the expected relativistic form. The 1-
particle structure factor Sxx

1p reduces to

Sxx
1p (k) → 1

2�
−3/4�̃

′xx
1p (cq/�) (47)

which has the expected scaling form (cf equation (36)), with
d = 1, z = 1, η = 1/4, ν = 1, the transverse Ising model
values, and

�̃
′xx
1p (cq/�) = 1/ f (cq/�). (48)

The other transverse structure factor

Syy
1p (k) → 1

8�
5/4�̃

′ yy
1p (cq/�). (49)

where
�̃

′ yy
1p (cq/�) = f (cq/�). (50)

Note that whereas Sxx
1p (k) diverges as {λ → 1, k = 0}, Syy

1p (k)
does not, and has a sub-leading critical index, two powers of
� smaller than Sxx

1p . It appears that Syy decouples from the
one-particle state at the critical point.

The quasiparticle residue for the dominant spectral weight
Sxx at k = 0 is

A(k) = (1 − λ2)1/4 ∼ [2(1 − λ)]1/4, λ → 1, (51)

in agreement with Sachdev’s result [4], after one takes into
account differing normalization factors in our definitions. Note
that in this case A(k) is independent of k.

We may deduce the scaling form of the full 1-particle
structure function in the vicinity of the critical point:

Sxx
1p (k, ω) = �−7/4

2 f (cq/�)
δ(ω/�− f (cq/�)) (52)

whence the scaling function for the dominant component may
be taken as

�̃xx
1p (cq/�,ω�) = �̃′xx

1p (cq/�)δ(ω/�− f (cq/�)) (53)

with normalization factor Z̃ xx
1p = 1/2. These are the simplest

possible free-particle forms, save only the renormalization of
the residue function with coupling.

4. Comparison with numerical results

4.1. The transverse Ising model in higher dimensions

The behaviour of the transverse Ising model in higher
dimensions is qualitatively similar. The 1-particle structure
factors for the transverse Ising model on the triangular, square,
and cubic lattices have also been calculated by Hamer et al [5],
using high-order series expansions. Some sample results for
the square and cubic lattices are shown in figures 1–4.

For the square lattice, the critical point is estimated [12] to
lie at λ = 0.328 41(2), and the critical exponents are expected
to be the same as those of the classical 3D Ising model, namely
η = 0.0364(5), ν = 0.6301(4), from various estimates [13].
The results for Sxx

1p and Syy
1p along high-symmetry cuts through

the Brillouin zone for the system with couplings λ = 0.1,
0.2, 0.3, 0.328 and 0.3284 are given in figures 1, 2. The
results of a standard Dlog Padé analysis [5] of the series for
Sxx

1p (k) at k = (0, 0) and k = (π/2, π/2) at k = (0, 0),
where the energy gap vanishes, give estimates λc = 0.3284(4)
with exponent −0.605(5), compared to the expected exponent
ν(η−1) = −0.607. At momentum k = (π/2, π/2), where the

4
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Figure 1. Sxx
1p (k) along high-symmetry cuts through the Brillouin

zone for the transverse Ising model with coupling λ = 0.1, 0.2, 0.3,
0.328, 0.3284 on the square lattice. Reproduced with permission
from [5]. Copyright 2006 by the American Physical Society.

Figure 2. Syy
1p (k) along high-symmetry cuts through the Brillouin

zone for the transverse Ising model with coupling λ = 0.1, 0.2, 0.3,
0.328, 0.3284 on the square lattice. Reproduced with permission
from [5]. Copyright 2006 by the American Physical Society.

energy gap remains finite, we find λc = 0.34(3) with exponent
0.04(2) compared to the expected value νη = +0.0229. For
Syy

1p , the estimate for the critical index is very close to the value
ν(η + 1) = 0.65.

In figures 1 and 2 for λ = 0.328 and 0.3284, we have
biased the critical point to λc = 0.328 41 with critical index
νη = +0.0229 in our analysis. We can see from these figures,
that even for λ = 0.3284 which is very close to the critical
point, Sxx

1p and Syy
1p are still far from zero. This reflects the tiny

value of the exponent ην, which implies a precipitous drop to
zero just before the critical point.

Figures 3 and 4 show similar graphs for the simple cubic
lattice. In this case, the critical point has been obtained
previously [14] as λc = 0.194 06(6), and the critical exponents
are expected to lie in the universality class of the 4D classical

Figure 3. Sxx
1p (k) along high-symmetry cuts through the Brillouin

zone for the transverse Ising model with coupling λ = 0.1, 0.15 and
0.19 on the simple cubic lattice. Reproduced with permission
from [5]. Copyright 2006 by the American Physical Society.

Figure 4. Syy
1p (k) along high-symmetry cuts through the Brillouin

zone for the transverse Ising model with coupling λ = 0.1, 0.5 and
0.19 on the simple cubic lattice. Reproduced with permission
from [5]. Copyright 2006 by the American Physical Society; note
that the label on the y axis should read Syy , not Sxx .

Ising model, where we expect the mean field exponents η = 0,
ν = 1/2, modulo logarithmic corrections [4].

The analysis of Sxx
1p (k) at k = (0, 0, 0), where the energy

gap vanishes, gives λc = 0.194 06(8)with exponent −0.54(1),
while for Syy

1p (k) at k = (0, 0, 0), the estimate of the critical
point is λc = 0.194(4) with exponent 0.55(3). Away from
k = (0, 0, 0), where the energy gap remains finite, we find
λc = 0.22(3) with exponent 0.03(2) for both Sxx

1p (k) and
Syy

1p (k). Allowing for logarithmic corrections, these estimates
agree reasonably well with the expected values.

In all cases, we see that the dominant structure factor
Sxx

1p at the critical wavevector diverges at the critical coupling
with exponent −ν(1 − η), while Syy

1p vanishes with exponent

5
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Figure 5. The integrated structure factor S versus k for the
alternating Heisenberg chain with λ = 0 (dotted line), 0.6 (dashed
line), 1 (crosses). Also shown is the quantity S′ ≡ 6S[−2π ln
(1 − k

2π )/k]−3/2 for λ = 1 (squares). Reproduced with permission
from [7]. Copyright 2003 by the American Physical Society.

consistent with ν(1 + η). Away from the critical wavevector,
the structure factors both vanish at the critical coupling with a
small exponent consistent with νη.

4.2. The alternating heisenberg chain

Schmidt and Uhrig [6] and Hamer et al [7] have investigated
the spectral weights of the alternating Heisenberg chain, which
can be described by the following Hamiltonian

H =
∑

i

(S2i · S2i+1 + λS2i−1 · S2i) (54)

where the Si are spin- 1
2 operators at site i , and λ is the

alternating coupling. Here we assume that the distance
between neighbouring spins are all equal and the distance
between two successive dimers is d .

There is a considerable literature on this model, which has
been reviewed by Barnes et al [15]. At λ = 0, the system
consists of a chain of decoupled dimers, and in the ground
state each dimer is in a singlet state. Excited states are made
up from the three-triplet excited states on each dimer, with
a finite energy gap between the singlet ground state and the
triplet excited states. This scenario is believed [16–18] to hold
right up to the uniform limit λ = 1, which corresponds to a
critical point. At λ = 1, we regain the uniform Heisenberg
chain, which is gapless.

Several theoretical papers [19–22] have discussed the
approach to the uniform limit. Analytic studies of the critical
behaviour near λ = 1 [19] have related the alternating chain
to the 4-state Potts model, and indicate that the ground-state
energy per site ε0(λ), and the energy gap �(λ) should behave
as

ε0(λ)− ε0(1) ∼ δ4/3/| ln(δ/δ0)| (55)

Figure 6. The integrated structure factor S versus λ for the
alternating Heisenberg chain with kd = π/2, π , 3π/2 and 2π .
Reproduced with permission from [7]. Copyright 2003 by the
American Physical Society.

�(λ) ∼ δ2/3/
√| ln(δ/δ0)| (56)

as λ → 1, where δ = (1 − λ)/(1 + λ). This corresponds to
critical exponents α = 2/3, ν = 2/3. The logarithmic terms
in (53) are due to the existence of a marginal variable in the
model.

For the uniform chain λ = 1, and near kd → 2π (where d
is the lattice spacing), Affleck [23] has obtained expressions for
the correlation functions in the model, including logarithmic
corrections, which correspond to an exponent η = 1:

Gz(r) = Gx(r) → 1

(2π)3/2
(ln r)1/2

r
. (57)

Fourier transforming, one obtains the asymptotic form for
S−+(kd) as

S(kd) ≡ S−+(kd) = 8

3(2π)3/2
| ln(π − kd/2)|3/2. (58)

Note that in this case (1 − η)ν = 0, so there is no power-law
divergence in the structure factor, but rather a logarithmic one.

This implies that for kd = 2π and as λ → 1, the
asymptotic form for S(2π) diverges as

S(2π) ∝ [− ln(1 − λ)]3/2 λ → 1. (59)

For 0 < kd < 2π , one expects S to be finite for any λ.
The results obtained by Hamer et al [7] for S versus

momentum k for λ = 0, 0.6, and 1 are shown in figure 5.
Note that

∫ 2π
0 S(k)dk = 2π (here we set d = 1), independent

of λ, so the area under each curve is the same. Also shown in
the figure are the results for S′ ≡ 6S[−2π ln(1 − k

2π )/k]−3/2

6
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Figure 7. The relative 1-particle weight S1p/S versus λ for the
alternating Heisenberg chain with kd = 0+, π/2, π , 3π/2 and 2π .
Reproduced with permission from [7]. Copyright 2003 by the
American Physical Society.

at λ = 1. The results appear reasonably consistent with the
expected behaviour.

For fixed values of k, figure 6 shows the integrated
structure factor S versus λ, where for each value of k, about
20 different integrated differential approximants to the series
are shown. We can see that the results converge very well out
to λ = 1. The logarithmic divergence as λ → 1 for the case
k = 2π is clearly evident.

For 0 < kd < 2π , an analysis of the series for
the 1-particle structure factor S1p ≡ S−+

1p using Dlog Padé
approximants by Schmidt and Uhrig [6] appeared to show
that it vanishes with a behaviour close to (1 − λ)1/3. Since
S remains finite, one would thus expect that S1p/S vanishes
like (1 − λ)1/3. This agrees with a heuristic argument [6] that
the 1-particle spectral weight should vanish like

√
�, i.e. like

δ1/3/| ln(δ/δ0)|1/4, where δ = (1 − λ)/(1 + λ). It disagrees,
however, with what one might expect from the transverse Ising
model example, that the one-particle residue should vanish
with exponent ην = 2/3 at all wavevectors, leading to a
behaviour (1−λ)2/3. It is possible that a logarithmic correction
term may again be disguising the true power-law behaviour;
or alternatively, the power-law behaviour of the renormalized
one-particle residue function might indeed be different away
from the critical wavevector. It would be useful to have some
further analytical guidance in this case.

Figure 7 shows numerical values from Hamer et al [7] for
the relative 1-particle weight S1p/S versus λ at selected values
of kd . It can be seen that for any non-zero value of k, S1p/S
decreases abruptly to zero as λ → 1. Only at kd = 0+, does
S1p/S remain finite (about 0.993) in the limit λ = 1; but by
then S has itself decreased to zero.

Finally, we discuss the results for the spin auto-correlation
functions, defined as

Figure 8. The auto-correlation functions versus λ of the alternating
Heisenberg chain model for the 1-particle state (�1p), 2-particle
states (�2p), and two-particle bound states T1 and T2. Reproduced
with permission from [8]. Copyright 2008 by the American Physical
Society.

�(ω) = 1

2π

∫ ∞

−∞
dk S−+(k, ω). (60)

Schmidt and Uhrig [6] argued that the critical behaviour
for the total auto-correlation function (summed over ω) of the
1-particle state �1p should be

�1p ∝ (1 − λ)1/3 (61)

modulo logarithms, as for the structure factors.
Figure 8 shows various auto-correlation functions versus

λ, reproduced from Hamer et al. One can see that�1p vanishes
at the limit λ = 1, while (1 − λ)−1/3�1p increases almost
linearly as λ increases. The curve for (�1p + �2p), if we
assume it is non-singular at λ = 1 (i.e. the singularities in
�1p and �2p cancel exactly), runs almost flat with λ once
we neglect unphysical and defective approximants: that would
indicate that the 2-particle sector accounts for about 99.8%
of the weight, even at λ = 1, which agrees almost exactly
with the conclusions of Schmidt and Uhrig [6]. Remarkably,
this is much higher than the fraction of 73% for the two-
spinon continuum at λ = 1 calculated by Karbach et al
[24] from the exact solution. Also shown in figure 8 is the
direct extrapolation of the 2-particle auto-correlation�2p using
integrated differential approximants. These extrapolations
assume that there is no singularity in �2p at λ = 1, and the
results give a somewhat smaller value of about 0.9 at λ = 1.

Overall, then, the 1-particle energy gap and spectral
weight at general momenta appear to vanish as λ → 1,
following the behaviour predicted by Cross and Fisher [19],
and already confirmed numerically by Singh and Zheng [25].
However, the 2-triplet spectral weight remains finite in the
uniform limit and, in fact, appears to form the major part of the

7
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Figure 9. The total static structure factor S(k) in the bilayer
Heisenberg model as a function of k at various couplings λ = J1/J2.
Reproduced with permission from [8]. Copyright 2008 by the
American Physical Society.

total spectral weight. Schmidt and Uhrig [6] already pointed
out that indeed the 2-triplet states carry a larger portion of
the total spectral weight than the 2-spinon states, calculated
by Karbach et al [24]. This argues that a description in terms
of triplons remains equally valid with a description in terms of
spinons for the uniform chain.

4.3. Heisenberg bilayer model

As our final example, we consider the Heisenberg bilayer
antiferromagnet on the square lattice, with Hamiltonian

H = J1

∑

l=1,2

∑

〈i, j〉
Sli · Slj + J2

∑

i

S1i · S2i (62)

where l = 1, 2 labels the two planes of the bilayer. The physics
of the system then depends on the coupling ratio λ = J1/J2.
At λ = 0, the ground state consists simply of S = 0 dimers
on each bond between the two layers, and excitations are
composed of S = 1 ‘triplon’ states [6] on one or more bonds.
At large λ, where the J1 interaction is dominant, the ground
state will be a standard Néel state, with S = 1 ‘magnon’
excitations. At some intermediate critical value λc, a phase
transition will occur between these two phases. It is believed
that this transition is of second order, and is accompanied by a
Bose–Einstein condensation of triplons/magnons in the ground
state.

Figures 9 and 10 show some series results for structure
factors in the dimerized phase, calculated by Collins and
Hamer [8]. Figure 9 shows the total static transverse structure
factor S(k) ≡ S+−(k) as a function of k at various couplings
λ = J1/J2. All results are for kz = π , probing intermediate
states antisymmetric between the planes, and we only refer to
k = (kx, ky) hereafter.

The dominant feature is a large peak at the Néel point
k = (π, π), which appears to become divergent as λ → λc, as

Figure 10. The ratio S1p(k)/S(k) of the 1-particle static structure
factor to the total static structure factor as a function of k in the
bilayer Heisenberg model, for various couplings λ = J1/J2.
Reproduced with permission from [8]. Copyright 2008 by the
American Physical Society.

we would expect. Figure 10 shows the ratio of the 1-particle
structure factor S1p(k) to the total S(k) as a function of k. The
1-particle contribution generally remains the dominant part of
the total, particularly near the Néel point.

Let us now compare these results with theoretical
expectations. From scaling theory (section 2), both the 1-
particle structure factor and the total structure factor in the
vicinity of the critical point should scale like (λc − λ)(η−1)ν ,
at the critical (Néel) momentum. We expect this transition
to belong to the universality class of the O(3) model in 3
dimensions, which has critical exponents [26] ν = 0.707(4),
η = 0.036(3), hence we expect (η − 1)ν = −0.682(5), which
is quite compatible with the numerical estimates.

How does S1p behave at the critical coupling away from
the Néel momentum? Here the behaviour is quite different
from the previous models. The ratio S1p/S decreases smoothly
towards the critical coupling, and shows no sign of vanishing
there. In fact the 1-particle structure factor remains dominant
everywhere, remaining at 80% of the total or more. Thus it
appears that in this case the renormalized residue function does
not vanish at λc, except at the Néel momentum. Since we
expect the one-particle spectral weight to be continuous across
the transition, except possibly at the critical wavevector, this
implies that there must be a single-particle excitation with the
same quantum numbers on both sides of the transition: in this
case, the ‘triplon’ and the magnon states both have spin 1.

5. Summary and conclusions

This paper consists largely of a review of the behaviour
of structure factors near a quantum phase transition, at
temperature T = 0. We have focused here on quantum spin
models, but the conclusions should apply more generally.

Section 2 reviewed current theory on the subject, drawn
largely from Sachdev [4]. The generic scaling behaviour
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of both the total structure factor and the 1-particle exclusive
structure factor is predicted to be the same, determined by the
critical exponents η and ν.

We then reviewed calculations of the structure factors for
some specific quantum spin models. For the transverse Ising
model in one dimension, exact results can be obtained [5];
while for the transverse Ising model in higher dimensions [5],
the alternating Heisenberg chain [6, 7], and the bilayer
Heisenberg model [8], we have used some numerical results
obtained from series expansions to high orders. For the most
part, the results conform to theoretical expectations.

Some significant differences have been noted, however, in
the detailed behaviour of these models, particularly as regards
the 1-particle structure factor. In the transverse Ising model
the 1-particle residue vanishes at the critical point for all
wavevectors, and so the 1-particle contribution to the total
structure factor becomes negligible. For the solvable case of
the one-dimensional chain, the residue is actually independent
of wavevector.

For the alternating chain, the one-particle (‘triplon’)
residue again vanishes at the critical point, and it is the 2-
particle state which appears to become dominant at the phase
transition [6, 7]. But the residue appears to vanish with
a different exponent depending on the wavevector, namely
2/3 at the critical wavevector and 1/3 away from it, which
seems peculiar, although the heuristic argument of Schmidt
and Uhrig [6] does provide an explanation. Could it be
that the true exponent is disguised by logarithmic corrections,
or perhaps the renormalized residue function does indeed
behave differently at different wavevectors, and vanishes with a
different exponent away from the critical wavevector? Further
analysis is needed here.

For the bilayer Heisenberg model, on the other hand,
the renormalized 1-particle residue vanishes at the critical
wavevector only, and the 1-particle state remains dominant
at the critical point. This type of behaviour would indicate
that there must be one-particle excitations with equal quantum
numbers on both sides of the transition (‘triplon’ versus
magnon, in this instance).

Thus it seems that the behaviour of the one-particle
spectral weight away from the critical wavevector is very much
model-dependent.
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